A scalable workbench for implementing and evaluating distributed applications in mobile ad-hoc networks

Johannes K. Lehnert, **Daniel Görgen**, Hannes Frey, Peter Sturm
System software and distributed systems
University of Trier
Germany
Mobile multi-hop ad-hoc networks

- Metropolitan sized networking
- Mobile devices
 - Wireless communication facilities
 - Localized location computation
- Direct communication only within transmission range
- Unpredictable network topology changes due to mobility
 - Network partitions
 - Permanent link failures
Mobile multi-hop ad-hoc networks

- Metropolitan sized networking
- Mobile devices
 - Wireless communication facilities
 - Localized location computation
- Direct communication only within transmission range
- Unpredictable network topology changes due to mobility
 - Network partitions
 - Permanent link failures
Application development in mobile multi-hop ad-hoc networks

- Challenging area
 - State-of-the-art still an open question
 - Self-organization
 - Small devices with many limitations

- Field trials expensive
 - Time, money, hardware, people
 - Critical mass needed for serious tests

- Uniform workbench
 - Develop and test in simulation first
 - Evaluate application in emulation
 - Use the *same* code in field trials
Marketplace communication

- Fixed geographic regions
 - High device density
 - Known position
- Devices at market acting on behalf of a user
- Geographic routing of agents/data
 - To and from marketplaces
- Negotiation at a marketplace
 - Geographic limited broadcast
 - Topology-based Routing
- Definition of home zones
 - Negotiation results are sent back to a defined home zone
Case Study: UbiBay

- Developed using workbench & proposed development process
 - Simulation
 - Emulation
 - Field-Trials

- Auction at marketplaces
 - Intended for low value goods
 - Direct neighborhood

- Agents
 - Auction agent
 - Controls the auction
 - Discovery agent
 - Discovers all auctions at marketplace
 - Bid agent
 - Bids on behalf of a user
Case Study: UbiBay

- Auction at marketplaces
 - Intended for low value goods
 - Direct neighborhood

- Agents
 - Auction agent
 - Controls the auction
 - Discovery agent
 - Discovers all auctions at marketplace
 - Bid agent
 - Bids on behalf of a user
Workbench: Simulation

- Scalable
 - 10000 devices possible
 - Precomputation for mobility and connectivity

- Focus on topological properties

- Extensible
 - Components defined as interfaces
 - Many default implementations (mobility, connectivity, network)

“Faster than real-time”
Workbench: Simulation II

- Intuitive, high abstraction level
 - Register as listener for neighbor discovery
 - Network messages = Java objects

- Code reuse

- Powerful Visualization
 - Freely definable
 - Multiple output targets: Swing/Java2D, OpenGL, PostScript, ...

“Concentrate on development, not on the simulator!”
Workbench: Hybrid mode

- Simulate network and devices
- Connect workstations or other devices to simulation
 - Replace simulated user behavior with GUI
 - RMI server controls simulation kernel
 - Mix of simulated and real user behavior possible
- Valuable for debugging
- “Get a feeling for the application”
Workbench: Real hardware

- Execution environment identical to simulation
 - Multiple threads, synchronization queues
 - Network implementation: WLAN + UDP unicast/broadcast
 - Positioning: GPS receivers
 - Neighbor discovery: periodic broadcasts
 - GUI: reused from hybrid mode

- Current implementation: PocketPC with IBM J9 VM
Summary

- Workbench approach works
 - Scalable:
 simulate thousands of devices in real-time
 - Intuitive and productive programming environment
 - Code reuse very effective

- It’s not finished:
 - Provide more mobility models
 - “Realistic” network model
 - Allow feedback from visualization